

Constellation X-ray Mission

Jean Grady/NASA GSFC

Topics

- Project Overview Jean Grady
 - Summary of Progress and Events
 - Configuration Summary
 - Technology Assessment
 - Technology Progress Summary
 - Technology NRA
 - Budgets
 - Wrap-up
- Single Launch Configuration Studies
 - Trades Mark Freeman/SAO
 - Details of single launch with 4 SXTs Gabe Karpati/GSFC

Summary of Progress and Events Since Last FST Meeting (Oct. 2004)

- Exploration of Collaboration with ESA/XEUS (Nov 2004 to July 2005)
 - Collaborative Formation Flying study in NASA GSFC Integrated Mission Design Center (Dec 2004)
 - Con-X/XEUS Collaborative Science Meeting (Feb 2005)
 - Follow-up studies geared toward accommodating reflection gratings, formation flying analyses
 - Ended collaborative studies (July 2005)
- Single Launch Configuration Development (July 2005 to Feb. 2006)
 - Trades of configurations with range of focal lengths (July to Oct 2005)
 - Concept development of "10-4" configuration (Nov 2005 to Feb 2006)
- Technology Assessment (Nov 2005 to Jan 2006)
 - Commissioned by Ed Weiler; Conducted by GSFC Applied Engineering & Technology Directorate
 - Initiated in November 2005 (both Con-X and LISA)
 - Report completed January 2006

Reminder of 4 Satellite "Reference" Configuration

- 4 identical satellites
 - Each with portion of the mission collecting area
 - Simultaneously, independently view same target (no formation flying)
- Launch two at a time on Atlas V-5 class vehicles
- L2 orbit provides increased observing efficiency, thermal stability
- Focal length is 10m
- Each satellite payload consists of:
 - One (1) Spectroscopy X-ray Telescope (SXT)
 Flight Mirror Assembly, 1.6m dia shared by
 - One(1) Reflection Grating Spectrometer (RGS)
 - » Reflection Grating Assembly (RGA) mounts in SXT Flight Mirror Assembly
 - » RGS Focalplane Camera (RFC)
 - One (1) X-ray Microcalorimeter Spectrometers (XMS)
 - Three (3) Hard X-ray Telescope mirror/detectors systems

Reference Launch w/ 2 Satellites on Atlas V class vehicle

Reminder of 4 Satellite "Reference" Configuration — cont. ("Expanded" view, one of four satellites shown)

Single Launch Observatory Configuration "10-4"

- Single satellite on single launch vehicle (Delta IV H) meets Constellation-X performance requirements
- Orbit remains at L2
- Mirrors and Instruments same as for 4 satellite "Reference" configuration
 - Same focal length of 10 m
 - Same size and number of mirrors and instruments
 - Same technology required and same technology development roadmaps
- Full Mirror and Instrument Payload
 - 4 Spectroscopy X-ray Telescope (SXT) Flight Mirror Assemblies, 1.6m dia each
 - 4 Reflection Grating Spectrometers
 - 4 X-ray Microcalorimeter Spectrometers (XMS's)
 - 12 Hard X-ray Telescope mirror/detectors systems
- Spacecraft bus and Observatory System
 - Spacecraft components generally off-the-shelf
 - Overall mass margin reasonable for this stage in the program

Configuration is shaping up to be the new "Reference" for Con-X

Single Launch Mission Configuration ("Expanded" view shown for clarity)

Technology Assessment

- Assessment was GSFC internal review of both LISA and Con-X technologies
- Charter included:
 - Confirm that all required technologies have been identified and are under development
 - Assess and validate the current technology status, utilizing Technology Readiness Levels (TRL)
 - Assess and validate the feasibility of the technology maturation plans and technical criteria for development through TRL 6
 - Identify weaknesses, risks, etc
- Report completed January 20, 2006
 - Significant progress since TRIP (2003) was noted
 - Technology requirements found to be understood; plans for completing development sound
 - "Con-X has the distinct advantage in that they do not really need a flight experiment to qualify their technology."

Con-X Technology Assessment Summary

Critical Technology*	TRL Prime	TRL Alternate
Spectroscopy X-ray Telescope Mirror	3-4	
Reflection Grating Spectrometer Gratings	3-4	
Reflection Grating Spectrometer CCD Detector	3	
Microcalorimeter	4	4
Adiabatic Demagnetization Refrigerator	4	3
Cryocooler	4-5	4, 4
HXT mirrors	4-5	4
HXT focal plane system	5	

^{*}Remaining observatory system and subsystem technologies including spacecraft bus are considered at TRL 6 or higher.

Many thanks to all those who contributed to the Technology Assessment!

TECHNOLOGY STATUS: Large, Lightweight X-ray Mirrors for Spectroscopy X-ray Telescope (SXT)

- Segmented, modular lightweight mirrors flight-proven on ASTRO-E and previous missions
- Glass Mirror Segments
 - Produced mirror segments that meet flight performance specification (with and without epoxy replication)
 - Consistently forming mirror substrates that are of quality to meet flight angular resolution requirements with epoxy replication
 - Successful vibration test of mirror segments
- Alignment Tools and Techniques in development
 - X-ray test of alignment pathfinder planned for spring 2006

ASTRO-E mirror

Glass mirror segment

Mirror segment alignment pathfinder

Con-X mirror design concept

Substrate forming in oven

TECHNOLOGY STATUS: Gratings and CCD's Grating

- Grating Patterning Scanning Beam Interference Lithograph – SBIL (MIT)
 - Patterned gratings in required size
 - Demonstrated required blaze and smoothness; required line density
 - Currently upgrading SBIL to accommodate radial (fan-shaped) grooves (to be complete '06)
- Grating Patterning Holographic (Jobin Yvon, U of Colorado)
 - Ruled high line density radial grating
- Demonstrated substrate flatness better than required (MIT)
- Prototype masters and replicas show record-level efficiencies in X-ray test (MIT)

CCD (MIT/LL)

- High-speed readout Event Driven CCD
 - Successfully completed two lot's of Event Driven CCD's
- High quantum efficiency, high production yield
 - Demonstrated high yield "chemisorption" backside processing (U of Arizona on LL devices)
 - Recent progress on LL Molecular Beam Epitaxy backside processing also looks promising

SBIL patterned grating (MIT)

EDCCD: Large motherboard and camera plate (MIT)

TECHNOLOGY STATUS: Microcalorimeters and Coolers

- Suzaku/XRS provides flight heritage
- Transition Edge Sensor TES (GSFC, NIST)
 - Demonstrated energy resolution required for Con-X at 1.5 keV and 6 keV
 - Routinely fabricating 8x8 arrays with high quantum efficiency, high fill factor
 - Successfully multiplexed 16channels
- Continuous Adiabatic
 Demagnetization Refrigerator –
 CADR (GSFC)
 - 4-stage breadboard CADR demonstrating required operating and heat rejection temperatures and cooling power
- Mechanical Cryocooler
 - Under development for JWST; meets Con-X requirements

XRS

8X8 array with Bi/Cu absorbers

4-stage CADR

TECHNOLOGY STATUS: Hard X-ray Telescope (HXT)

- Glass Mirrors (Columbia, CalTech, DSRI)
 - HEFT (balloon) mirror meeting Con-X mass and performance requirements has successfully flown
 - Prototype mirrors have performances
 <u>better than</u> required; have been
 successfully acoustic and vibration tested
- Nickel Mirrors (SAO, MSFC, Brera)
 - Single shell mounted prototype has demonstrated angular resolution <u>better</u> <u>than</u> required in X-ray test
 - Fully lightweighted shells have been produced
- Detectors (CalTech)
 - CdZnTe hybrid pixel detectors have been demonstrated on HEFT
 - Meets required performance
 - Vibration tested

Prototype mirror acoustics tested at JPL facility

CdZnTe hybrid pixel detector

HEFT 72-shell glass mirror optic

Single shell nickel mirror in X-ray test at PANTER

CdZnTe vibration test

Technology NRA Originally Planned for Release in Spring FY06

- Project is in the process of developing a solicitation (through ROSES NRA) for Con-X instrument technology development program
 - Last technology competition held in 1998
- Focuses on technology for Con-X instruments:
 - Reflection Grating Spectrometer
 - X-ray Microcalorimeter Spectrometer
 - Hard X-ray Telescope
- Goal is to advance technology in the TRL 3-6 range, bring in new ideas for technology, and is essential to prepare and sustain teams for instrument AO in future
- NRA release date TBD (pending budget allocation)

Instrument Technology Integrated Product Team's (IPT's) Dissolved; Instrument Scientists Appointed

- In anticipation of the technology NRA and to encourage open and fair communication between the Project and all Con-X technology providers, Technology IPT's have been dissolved
- Instrument Scientists have been appointed:
 - Jean Cottom for the Reflection Grating Spectrometer (RGS)
 - Rick Shaffer for the X-ray Microcalorimeter Spectrometer (XMS)
 - Ann Parsons for the Hard X-ray Telescope (HXT)
- Instrument Scientists are GSFC civil servant; duties include
 - Assure science requirements are addressed by technology development efforts
 - Provide a key interface between the instrument technology developers and the mission level studies
 - Assist in generation of specifications and statements of work for future technology and instrument solicitations
- Instrument Scientists are ineligible to propose for or receive funding for Con-X technology development

Many thanks to former-IPT Leads Kathy Flanagan, Rich Kelley and Fiona Harrison for their dedication and service!

Summary

 Con-X Single Launch mission configuration is robust and cost-effective

 Technology Assessment confirms good progress on technologies; solid maturation plans

 NRA for selecting instrument technologies to fund is still in the plan; release date pending budget allocations